Selective Formation of HCOO⁻ in the Electrochemical CO₂ Reduction catalysed by $[Ru(bpy)_2(CO)_2]^{2+}$ (bpy = 2,2'-bipyridine)

Hitoshi Ishida, Hiroaki Tanaka, Koji Tanaka, and Toshio Tanaka*

Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565, Japan

The selectivity for the formation of HCOO⁻ in electrochemical CO₂ reduction catalysed by $[Ru(bpy)_2(CO)_2]^{2+}$ (bpy = 2,2'-bipyridine) increases on increasing the pK_a value of the proton source, and highly selective formation of HCOO⁻ is achieved by using Me₂NH·HCl or PhOH as a proton source in MeCN.

Electrochemical CO₂ reductions catalysed by transition metal complexes have been reported,^{1,2} and the reduction products are mostly mixtures of HCOO⁻ and CO resulting from the reactions of equations (1) and (2), or only CO. However, selective formation of HCOO⁻ has scarcely been reported.² Thus, selective HCOO⁻ formation with a large current density is required in electrochemical CO₂ reduction since the rate of electrochemical reactions is generally slow. We have recently reported that CO₂ reduction catalysed by [Ru(bpy)₂(CO)₂]²⁺ (bpy = 2,2'-bipyridine) produced a mixture of CO and HCOO⁻ (*ca.* 7:10) under controlled potential electrolysis at -1.50 V vs. standard calomel electrode (s.c.e.) in a dimethylformamide (DMF)-H₂O (1:9 v/v) solution buffered at pH 9.5, while only CO was formed at pH 6.0 under otherwise identical electrolysis conditions.^{1a,b} In strong alkaline media, however, the reduction of CO_2 is unfavourable owing to the conversion of CO_2 into HCO_3^- and CO_3^{2-} , both of which are inactive towards electrochemical reduction catalysed by $[Ru(bpy)_2(CO)_2]^{2+}$. We now describe the electrochemical CO_2 reduction catalysed by $[Ru(bpy)_2(CO)_2]^{2+}$ in MeOH or MeCN in the presence of several proton sources, where very selective formation of $HCOO^-$ with a fast reaction rate is accomplished.

The electrolysis cell used in this study is essentially the same as described elsewhere^{1b,3} except that the anode and cathode compartments were separated by a Nafion membrane in place of a glass filter. A Hg pool (3.1 cm^2) and a platinum plate (*ca.* 3 cm²) were used as working and auxiliary electrodes,

Table 1. The electrochemical CO₂ reduction catalysed by $[Ru(bpy)_2(CO)_2]^{2+}$ in the presence of several proton sources in MeCN.^a

	pKa ^c in MeCN	Product ^a /µmol			Current
Proton source ^b		HCOO-	СО	H ₂	density ^e /mA cm ⁻²
MeNH ₂ ·HCl Me ₂ NH·HCl Me ₃ N·HCl PhCO ₂ H PhOH	15.6 15.8 14.8 12.0	332 (64.1) 437 (84.3) 288 (55.5) 117 (22.5) 420 (81.0)	$\begin{array}{cccc} 103 & (19.9) \\ 13 & (2.4) \\ 32 & (6.1) \\ 51 & (9.9) \\ 84 & (16.3) \end{array}$	$\begin{array}{cccc} 17 & (3.3) \\ 35 & (6.8) \\ 158 & (30.5) \\ 263 & (50.7) \\ 2 & (0.3) \end{array}$	1.6 3.3 3.3 2.2 2.3

^a Electrode potential was -1.30 V vs. s.c.e. ^b 0.20 mol dm⁻³. ^c G. Charlot and B. Tretmillon, 'Chemical Reactions in Solvents and Melts,' Pergamon Press, New York, 1969. ^d The current efficiency (%) for the formation of the product after the consumption of 100 C in parenthesis. ^e Average value for 100 C. ^f No available data in the literature.

respectively. The reduction of CO₂ in CO₂-saturated MeOH or MeCN (20 cm³) containing [Ru(bpy)₂(CO)₂]²⁺ (5.0×10^{-4} mol dm⁻³) and Buⁿ₄NClO₄ (0.10 mol dm⁻³) as an electrolyte was carried out by controlled potential electrolyses at -1.30 V or -1.50 V vs. s.c.e. on an Hg electrode. The reduction products, CO and H₂, were analysed by a gas chromatograph and HCOO⁻ was determined by an isotachophoretic analyser.⁴

$$CO_2 + H^+ + 2e \rightarrow HCOO^-$$
 (1)

$$CO_2 + 2H^+ + 2e \rightarrow CO + H_2O$$
 (2)

The reactions of equations (1) and (2) catalysed by $[\text{Ru}(\text{bpy})_2(\text{CO})_2]^{2+}$ proceeded smoothly in CO₂-saturated MeOH under controlled potential electrolysis at -1.50 V vs. s.c.e. The current efficiency (η) for the formation of HCOO⁻ and CO after consumption of 100 C were 52.5 and 32.0%, respectively, of which the former value is larger than that in water at pH 9.5 [η (HCOO⁻) = 34.0%].^{1a,b} The η (HCOO⁻) value increased to 67.7% on reduction of CO₂ in MeOH containing MeONa (0.1 mol dm⁻³) under the same electrolysis conditions, suggesting that less protic conditions improve the selectivity for the formation of HCOO⁻, being similar to those for the reduction in aqueous solutions.

The effect of several proton sources with different pK_a values on the reduction of CO₂, therefore, was examined in anhydrous MeCN. The results on the electrochemical CO₂ reduction at -1.30 V vs. s.c.e. in MeCN are summarised in Table 1, and show that the relative amounts of reduction products, HCOO⁻, CO, and H₂ are largely dependent on the pK_a value of proton sources; the η (HCOO⁻) value increases on increasing the pK_a value, and reaches 84.3% in the presence of Me₂NH·HCl. Such high selectivity for HCOO⁻ formation is comparable with that for the reduction of HCO₃⁻ by a viologen polymer-coated Pd electrode (*ca.* 85%) which is

the largest $\eta(\text{HCOO}^-)$ value reported so far.² In addition, the present reaction is very fast, as inferred from the large current densities of 1.6–3.3 mA cm⁻² (Table 1), which are in contrast with those for the reduction of HCO_3^- (50–100 μ A cm⁻²).² Thus, the present electrochemical CO₂ reduction is one of the most selective for HCOO^- formation, with the fastest reaction rate reported so far.

This work was supported by General Sekiyu Research and Development Encouragement and Assistance Foundation.

Received, 1st September 1986; Com. 1257

References

- 1 (a) H. Ishida, K. Tanaka, and T. Tanaka, Chem. Lett., 1985, 405; (b) Organometallics, in the press; (c) J. Hawecker, J. M. Lehn, and R. Ziessel, J. Chem. Soc., Chem. Commun., 1984, 328; R. P. Sullivan, C. M. Bolinger, D. Conrad, W. J. Vining, and T. J. Meyer, ibid., 1985, 1414; T. R. O'Toole, L. D. Margerum, T. D. Westmoreland, W. J. Vining, R. W. Murray, and T. J. Meyer, ibid., 1985, 1416; C. M. Bolinger, B. P. Sullivan, D. Conrad, J. A. Gilbert, N. Story, and T. J. Meyer, ibid., 1985, 796; S. Slater and J. H. Wagenknecht, J. Am. Chem. Soc., 1984, 106, 5367; M. Beley, J. P. Collin, R. Ruppert, and J. P. Sauvage, J. Chem. Soc., Chem. Commun., 1984, 1315; M. Tezuka, T. Yajima, A. Tsuchiya, Y. Matsumoto, Y. Uchida, and M. Hidai, J. Am. Chem. Soc., 1982, 104, 6834; C. M. Lieber and N. S. Lewis, *ibid.*, 1984, 106, 5033; B. Fisher and R. Eisenberg, *ibid.*, 1980, 102, 7361; S. Meshitsuka, M. Ichikawa, and K. Tamaru, J. Chem. Soc., Chem. Commun., 1974, 158; K. Hiratsuka, K. Takahashi, H. Sasaki, and S. Toshima, Chem. Lett., 1977, 1137; K. Takahashi, K. Hiratsuka, H. Sasaki, and S. Toshima, ibid., 1979, 305; S. Kapusta and N. Hackerman, J. Electrochem. Soc., 1984, 131, 1511.
- 2 C. J. Stalder, S. Chao, and M. S. Wrighton, J. Am. Chem. Soc., 1984, 106, 3673.
- 3 K. Tanaka, M. Honjo, and T. Tanaka, J. Inorg. Biochem., 1984, 22, 187.
- 4 N. Kitamura and S. Tazuke, Chem. Lett., 1983, 1109.